303 research outputs found

    Inherited Neurodevelopmental Brain Diseases: Applications of Homozygosity Mapping to Identify New Genetic Causes of Disease

    Get PDF
    AbstractObjectiveThe last two decades have seen major advancements in our understanding of some of the most common neurodevelopmental disorders in the field of child neurology. However, in the majority of individual patients, it is still not possible to arrive at a molecular diagnosis, due in part to lack of knowledge ofmolecular causes of these tremendously complex conditions. Common genetic disorders of brain development include septo-optic dysplasia, schizencephaly, holoprosencephaly, lissencephaly and hindbrain malformations. For each of these disorders, a critical step in brain development is disrupted. Specific genetic diagnosis is now possible in some patients with most of these conditions. For the remaining patients, it is possible to apply gene-mapping strategies using newly developed high-density genomic arrays to clone novel genes. This is especially important in countries like Iran where large family size and marriage between relatives makes these strategies tremendously powerful

    Simultaneous multiple-excitation multiphoton microscopy yields increased imaging sensitivity and specificity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiphoton microscopy (MPM) offers many advantages over conventional wide-field and confocal laser scanning microscopy (CLSM) for imaging biological samples such as 3D resolution of excitation, reduced phototoxicity, and deeper tissue imaging. However, adapting MPM for critical multi-color measurements presents a challenge because of the largely overlapping two-photon absorption (TPA) peaks of common biological fluorophores. Currently, most multi-color MPM relies on the absorbance at one intermediate wavelength of multiple dyes, which introduces problems such as decreased and unequal excitation efficiency across the set of dyes.</p> <p>Results</p> <p>Here we describe an MPM system incorporating two, independently controlled sources of two-photon excitation whose wavelengths are adjusted to maximally excite one dye while minimally exciting the other. We report increased signal-to-noise ratios and decreased false positive emission bleed-through using this novel multiple-excitation MPM (ME-MPM) compared to conventional single-excitation MPM (SE-MPM) in a variety of multi-color imaging applications.</p> <p>Conclusions</p> <p>Similar to the tremendous gain in popularity of CLSM after the introduction of multi-color imaging, we anticipate that the ME-MPM system will further increase the popularity of MPM. In addition, ME-MPM provides an excellent tool to more rapidly design and optimize pairs of fluorescence probes for multi-color two-photon imaging, such as CFP/YFP or GFP/DsRed for CLSM.</p

    'To live and die [for] Dixie': Irish civilians and the Confederate States of America

    Get PDF
    Around 20,000 Irishmen served in the Confederate army in the Civil War. As a result, they left behind, in various Southern towns and cities, large numbers of friends, family, and community leaders. As with native-born Confederates, Irish civilian support was crucial to Irish participation in the Confederate military effort. Also, Irish civilians served in various supporting roles: in factories and hospitals, on railroads and diplomatic missions, and as boosters for the cause. They also, however, suffered in bombardments, sieges, and the blockade. Usually poorer than their native neighbours, they could not afford to become 'refugees' and move away from the centres of conflict. This essay, based on research from manuscript collections, contemporary newspapers, British Consular records, and Federal military records, will examine the role of Irish civilians in the Confederacy, and assess the role this activity had on their integration into Southern communities. It will also look at Irish civilians in the defeat of the Confederacy, particularly when they came under Union occupation. Initial research shows that Irish civilians were not as upset as other whites in the South about Union victory. They welcomed a return to normalcy, and often 'collaborated' with Union authorities. Also, Irish desertion rates in the Confederate army were particularly high, and I will attempt to gauge whether Irish civilians played a role in this. All of the research in this paper will thus be put in the context of the Drew Gilpin Faust/Gary Gallagher debate on the influence of the Confederate homefront on military performance. By studying the Irish civilian experience one can assess how strong the Confederate national experiment was. Was it a nation without a nationalism

    Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration

    Get PDF
    Humans with mutations in either DCX or LIS1 display nearly identical neuronal migration defects, known as lissencephaly. To define subcellular mechanisms, we have combined in vitro neuronal migration assays with retroviral transduction. Overexpression of wild-type Dcx or Lis1, but not patient-related mutant versions, increased migration rates. Dcx overexpression rescued the migration defect in Lis1 (+/−) neurons. Lis1 localized predominantly to the centrosome, and after disruption of microtubules, redistributed to the perinuclear region. Dcx outlined microtubules extending from the perinuclear “cage” to the centrosome. Lis1 (+/−) neurons displayed increased and more variable separation between the nucleus and the preceding centrosome during migration. Dynein inhibition resulted in similar defects in both nucleus–centrosome (N-C) coupling and neuronal migration. These N-C coupling defects were rescued by Dcx overexpression, and Dcx was found to complex with dynein. These data indicate Lis1 and Dcx function with dynein to mediate N-C coupling during migration, and suggest defects in this coupling may contribute to migration defects in lissencephaly

    Pathogenic ARH3 mutations result in ADP-ribose chromatin scars during DNA strand break repair

    Get PDF
    Neurodegeneration is a common hallmark of individuals with hereditary defects in DNA single-strand break repair; a process regulated by poly(ADP-ribose) metabolism. Recently, mutations in the ARH3 (ADPRHL2) hydrolase that removes ADP-ribose from proteins have been associated with neurodegenerative disease. Here, we show that ARH3-mutated patient cells accumulate mono(ADP-ribose) scars on core histones that are a molecular memory of recently repaired DNA single-strand breaks. We demonstrate that the ADP-ribose chromatin scars result in reduced endogenous levels of important chromatin modifications such as H3K9 acetylation, and that ARH3 patient cells exhibit measurable levels of deregulated transcription. Moreover, we show that the mono(ADP-ribose) scars are lost from the chromatin of ARH3-defective cells in the prolonged presence of PARP inhibition, and concomitantly that chromatin acetylation is restored to normal. Collectively, these data indicate that ARH3 can act as an eraser of ADP-ribose chromatin scars at sites of PARP activity during DNA single-strand break repair

    Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy.

    Get PDF
    Aminoacyl-tRNA synthetases (ARSs) function to transfer amino acids to cognate tRNA molecules, which are required for protein translation. To date, biallelic mutations in 31 ARS genes are known to cause recessive, early-onset severe multi-organ diseases. VARS encodes the only known valine cytoplasmic-localized aminoacyl-tRNA synthetase. Here, we report seven patients from five unrelated families with five different biallelic missense variants in VARS. Subjects present with a range of global developmental delay, epileptic encephalopathy and primary or progressive microcephaly. Longitudinal assessment demonstrates progressive cortical atrophy and white matter volume loss. Variants map to the VARS tRNA binding domain and adjacent to the anticodon domain, and disrupt highly conserved residues. Patient primary cells show intact VARS protein but reduced enzymatic activity, suggesting partial loss of function. The implication of VARS in pediatric neurodegeneration broadens the spectrum of human diseases due to mutations in tRNA synthetase genes

    NSUN2 introduces 5-methylcytosines in mammalian mitochondrial tRNAs.

    Get PDF
    Expression of human mitochondrial DNA is indispensable for proper function of the oxidative phosphorylation machinery. The mitochondrial genome encodes 22 tRNAs, 2 rRNAs and 11 mRNAs and their post-transcriptional modification constitutes one of the key regulatory steps during mitochondrial gene expression. Cytosine-5 methylation (m5C) has been detected in mitochondrial transcriptome, however its biogenesis has not been investigated in details. Mammalian NOP2/Sun RNA Methyltransferase Family Member 2 (NSUN2) has been characterized as an RNA methyltransferase introducing m5C in nuclear-encoded tRNAs, mRNAs and microRNAs and associated with cell proliferation and differentiation, with pathogenic variants in NSUN2 being linked to neurodevelopmental disorders. Here we employ spatially restricted proximity labelling and immunodetection to demonstrate that NSUN2 is imported into the matrix of mammalian mitochondria. Using three genetic models for NSUN2 inactivation-knockout mice, patient-derived fibroblasts and CRISPR/Cas9 knockout in human cells-we show that NSUN2 is necessary for the generation of m5C at positions 48, 49 and 50 of several mammalian mitochondrial tRNAs. Finally, we show that inactivation of NSUN2 does not have a profound effect on mitochondrial tRNA stability and oxidative phosphorylation in differentiated cells. We discuss the importance of the newly discovered function of NSUN2 in the context of human disease.Medical Research Council, UK [MC_UU_00015/4 to M.M.]; EMBO [ALFT 701-2013 to L.V.H.]; National Research Foundation of Korea [NRF-2019R1A2C3008463 to S.Y.L and H.W.R.]; Cancer Research UK [C13474/A18583, C6946/A14492 to E.A.M.]; Wellcome Trust [104640/Z/14/Z, 092096/Z/10/Z to E.A.M.]. Funding for open access charge: MRC

    Mutations in LAMB1 Cause Cobblestone Brain Malformation without Muscular or Ocular Abnormalities

    Get PDF
    Cobblestone brain malformation (COB) is a neuronal migration disorder characterized by protrusions of neurons beyond the first cortical layer at the pial surface of the brain. It is usually seen in association with dystroglycanopathy types of congenital muscular dystrophies (CMDs) and ocular abnormalities termed muscle-eye-brain disease. Here we report homozygous deleterious mutations in LAMB1, encoding laminin subunit beta-1, in two families with autosomal-recessive COB. Affected individuals displayed a constellation of brain malformations including cortical gyral and white-matter signal abnormalities, severe cerebellar dysplasia, brainstem hypoplasia, and occipital encephalocele, but they had less apparent ocular or muscular abnormalities than are typically observed in COB. LAMB1 is localized to the pial basement membrane, suggesting that defective connection between radial glial cells and the pial surface mediated by LAMB1 leads to this malformation
    corecore